Approximations and decompositions in \(S^ 3\) (Q1083722)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Approximations and decompositions in \(S^ 3\) |
scientific article; zbMATH DE number 3977944
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Approximations and decompositions in \(S^ 3\) |
scientific article; zbMATH DE number 3977944 |
Statements
Approximations and decompositions in \(S^ 3\) (English)
0 references
1986
0 references
Taming theory for surfaces in Euclidean 3-space has made continued use of tame approximations to those surfaces. The authors investigate the extent to which k, \(k>1\), approximations can be made to intersect the sphere and each other nicely. The conclusion contains a number of technical conditions which we shall not repeat. However, the result is powerful enough to serve as the basis of a new proof of E. Woodruff's 2-sphere decomposition theorem. The result relies heavily on W. T. Eaton's difficult two-sided approximation theorem for 2-spheres.
0 references
side approximation
0 references
disjoint disks criterion
0 references
Taming theory for surfaces in Euclidean 3-space
0 references
two-sided approximation
0 references