The conformal structure of Riemann surfaces with boundary parametrizing minimal surfaces (Q1083732)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The conformal structure of Riemann surfaces with boundary parametrizing minimal surfaces |
scientific article; zbMATH DE number 3977969
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The conformal structure of Riemann surfaces with boundary parametrizing minimal surfaces |
scientific article; zbMATH DE number 3977969 |
Statements
The conformal structure of Riemann surfaces with boundary parametrizing minimal surfaces (English)
0 references
1987
0 references
If \({\mathcal R}\) is a compact Riemann surface and \({\mathcal F}\subset {\mathcal R}^ a \)submanifold with boundary \(\partial {\mathcal F}\) such that \({\mathcal R}\setminus {\mathcal F}\) is a disk, then we prove a Riemann mapping theorem for such surfaces \({\mathcal F}\). We prove that no conformal invariant of \({\mathcal R}\) remains to be an invariant of \({\mathcal F}\). There exists a manifold of real dimension 6g-3 for any g, parametrizing the classes of conformal equivalence of such \({\mathcal F}\subset {\mathcal R}\). We describe an embedding into Teichmüller space.
0 references
compact Riemann surface
0 references
Riemann mapping theorem
0 references
conformal invariant
0 references
Teichmüller space
0 references
0.9310452
0 references
0.9290829
0 references
0.9216776
0 references
0.9140683
0 references
0.9124805
0 references
0.9115582
0 references
0 references
0.9083977
0 references