An unconditionally stable implicit method for hyperbolic conservation laws (Q1083960)

From MaRDI portal





scientific article; zbMATH DE number 3978671
Language Label Description Also known as
English
An unconditionally stable implicit method for hyperbolic conservation laws
scientific article; zbMATH DE number 3978671

    Statements

    An unconditionally stable implicit method for hyperbolic conservation laws (English)
    0 references
    1985
    0 references
    We construct a space-centered self-adjusting hybrid difference method for one-dimensional hyperbolic conservation laws. The method is linearly implicit and combines a newly developed minimum dispersion scheme of the first order with the recently developed second-order scheme of \textit{A. Lerat} [Thesis, Univ. Pierre et Marie Curie (1981)]. The resulting method is unconditionally stable and unconditionally diagonally dominant in the linearized sense. The method has been developed for quasi-stationary problems, in which shocks play a dominant role. Numerical results for the unsteady Euler equations are presented. It is shown that the method is non-oscillatory, robust and accurate in several cases.
    0 references
    space-centered self-adjusting hybrid difference method
    0 references
    one-dimensional hyperbolic conservation laws
    0 references
    minimum dispersion scheme of the first order
    0 references
    second-order scheme
    0 references
    unconditionally diagonally dominant
    0 references
    quasi- stationary problems
    0 references
    unsteady Euler equations
    0 references
    0 references

    Identifiers