Permanents of doubly stochastic matrices (Q1084155)

From MaRDI portal





scientific article; zbMATH DE number 3977186
Language Label Description Also known as
English
Permanents of doubly stochastic matrices
scientific article; zbMATH DE number 3977186

    Statements

    Permanents of doubly stochastic matrices (English)
    0 references
    0 references
    1986
    0 references
    Let \(\mu_ k(n)\) denote the minimum value of the permanent of all \(n\times n\) (0,1) matrices whose row and column sums equal k. It has been conjectured that \[ \lim_{n\to \infty}[\mu_ k(n)]^{1/n}=(k-1)^{k- 1}/k^{k-2}. \] The author shows that if \(\prod^{n}_{j=1}\sum^{n}_{i=1}a_{ij}\prod_{k\neq 1}(1- a_{kj})\leq per A\) for any \(n\times n\) doubly stochastic matrix \(A=(a_{ij})\), then the conjecture is valid.
    0 references
    permanent
    0 references
    (0,1) matrices
    0 references
    doubly stochastic matrix
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references