Zum Aufbau einfach zusammenhängender Minimalflächen - besonders über ihre Instabilität und Häufung. (About the structure of simply connected minimal surfaces with emphasis on instability and clustering) (Q1084334)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Zum Aufbau einfach zusammenhängender Minimalflächen - besonders über ihre Instabilität und Häufung. (About the structure of simply connected minimal surfaces with emphasis on instability and clustering) |
scientific article; zbMATH DE number 3977813
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Zum Aufbau einfach zusammenhängender Minimalflächen - besonders über ihre Instabilität und Häufung. (About the structure of simply connected minimal surfaces with emphasis on instability and clustering) |
scientific article; zbMATH DE number 3977813 |
Statements
Zum Aufbau einfach zusammenhängender Minimalflächen - besonders über ihre Instabilität und Häufung. (About the structure of simply connected minimal surfaces with emphasis on instability and clustering) (English)
0 references
1986
0 references
The author gives some kind of rectifiable Jordan curve \(\gamma\) in \({\mathbb{R}}^ 3\), such that (1) \(\Gamma\) bounds an oriented minimal surface \(S_ 0\) of disk type, which is unstable; and (2) a sequence of minimal surfaces \(S_ n(n=1,2,...)\) of the same type as \(S_ 0\) spanning \(\gamma\) cluster at \(S_ 0\) in a natural topology. A crux of the proof lies in constructing infinitely many stationary points of the Dirichlet integral functional, which furnishes it with distinct and no absolutely minimal values.
0 references
Dirichlet principle
0 references
minimal surface
0 references