Sur les invariants du groupe symétrique dans certaines représentations. (On the invariants of the symmetric group in certain representations) (Q1084500)

From MaRDI portal





scientific article; zbMATH DE number 3979343
Language Label Description Also known as
English
Sur les invariants du groupe symétrique dans certaines représentations. (On the invariants of the symmetric group in certain representations)
scientific article; zbMATH DE number 3979343

    Statements

    Sur les invariants du groupe symétrique dans certaines représentations. (On the invariants of the symmetric group in certain representations) (English)
    0 references
    1986
    0 references
    Denote by \(W_ n\) the ordinary irreducible representation of \(G=S_{2n+1}\), the symmetric group, which corresponds to the hook shaped Young diagram \([n+1,1,...,1]\). Let \(\mu_ n\) indicate the minimal number of generators of the algebra \(C[W_ n]^ G\), consisting of the G- invariant polynomial functions on \(W_ n\). Then it is proved that, for even n and prime numbers \(2n+1\), the fraction \(\mu_ n/\dim W_ n\) and even the fraction log \(\mu\) \({}_ n/\log \dim W_ n\) tends to \(+\infty\).
    0 references
    irreducible representation
    0 references
    symmetric group
    0 references
    Young diagram
    0 references
    G-invariant polynomial functions
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers