Embedding of regular semigroups in wreath products. II (Q1084513)

From MaRDI portal





scientific article; zbMATH DE number 3979375
Language Label Description Also known as
English
Embedding of regular semigroups in wreath products. II
scientific article; zbMATH DE number 3979375

    Statements

    Embedding of regular semigroups in wreath products. II (English)
    0 references
    0 references
    1986
    0 references
    [Part I see ibid. 29, 177-207 (1983; Zbl 0572.20045.] A semigroup \({\mathcal S}\) is called natural locally \({\mathcal R}\)-unipotent if the union of its maximal subgroups is a sub-semigroup and for each idempotent element \(e\in {\mathcal S}\) the \({\mathcal R}\)-class of e\({\mathcal S}e\) contains exactly one idempotent. The main result of this paper (Theorem 37 of 50 numbered lemmas, remarks, propositions, theorems, and corollaries!) provides an embedding of natural locally \({\mathcal R}\)- unipotent semigroups in wreath products of simpler semigroups.
    0 references
    idempotent
    0 references
    embedding
    0 references
    natural locally \({\mathcal R}\)-unipotent semigroups
    0 references
    wreath products
    0 references

    Identifiers