A uniform bound for the tail probability of Kolmogorov-Smirnov statistics (Q1084783)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A uniform bound for the tail probability of Kolmogorov-Smirnov statistics |
scientific article; zbMATH DE number 3980221
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A uniform bound for the tail probability of Kolmogorov-Smirnov statistics |
scientific article; zbMATH DE number 3980221 |
Statements
A uniform bound for the tail probability of Kolmogorov-Smirnov statistics (English)
0 references
1985
0 references
Using an argument developed by \textit{D. Siegmund} [Ann. Probab. 10, 581- 588 (1982; Zbl 0487.60028)], we give a bound for the tail probability of Kolmogorov-Smirnov statistics in the following form \[ P(\inf_ x(F_ n(x)-F(x))>\zeta)\leq 2\sqrt{2}e^{-2n\zeta^ 2}. \]
0 references
exponential family
0 references
bound
0 references
tail probability
0 references
Kolmogorov-Smirnov statistics
0 references