A Hardy-Littlewood theorem for spherical Fourier transforms on symmetric spaces (Q1085383)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A Hardy-Littlewood theorem for spherical Fourier transforms on symmetric spaces |
scientific article; zbMATH DE number 3981786
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A Hardy-Littlewood theorem for spherical Fourier transforms on symmetric spaces |
scientific article; zbMATH DE number 3981786 |
Statements
A Hardy-Littlewood theorem for spherical Fourier transforms on symmetric spaces (English)
0 references
1987
0 references
Pour \(q\geq 2\), si \(\hat f\) est la transformée de Fourier d'une fonction définíe sur \({\mathbb{R}}^ n\), le théorème de Hardy et Littlewood assure l'existence d'une constante \(A_ q\) telle que \[ \| \hat f\|_{L^ q} \leq A_ q (\int | f(x)|^ q | x|^{n(q-2)} dx)^{1/q}. \] Les AA. établissent ici un analogue de ce résultat dans le cas des espaces riemanniens symétriques.
0 references
Hardy-Littlewood theorem
0 references
spherical Fourier transforms
0 references
symmetric spaces
0 references