Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian) (Q1085451)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian) |
scientific article; zbMATH DE number 3982001
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian) |
scientific article; zbMATH DE number 3982001 |
Statements
Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian) (English)
0 references
1986
0 references
Let (M,g) be a compact Riemannian manifold. Let \(\Delta\) be the Laplace operator for the vector \(C^{\infty}(M)\) of all the functions on the manifold M. The spectrum of \(\Delta\) has the form \(S_ p(M,g)=\{0<\lambda_ 1=...=\lambda_ 1<\lambda_ 2...\lambda_ 2<...<\infty \}\). One of the problems of the spectrum is to study some properties of the first eigenvalue of the \(S_ p(M,g)\). The main result of this paper can be stated as follows. Let M be a compact differentiable manifold of dimension \(n\geq 3\). If N is an arbitrary integer, then there is a metric g on M such that the first eigenvalue of \(S_ p(M,g)\) has multiplicity N.
0 references
Laplace operator
0 references
spectrum
0 references
first eigenvalue
0 references
0.8937467
0 references
0.88533556
0 references
0.8743039
0 references
0 references
0.86773443
0 references