Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces) (Q1085814)

From MaRDI portal





scientific article; zbMATH DE number 3984062
Language Label Description Also known as
English
Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces)
scientific article; zbMATH DE number 3984062

    Statements

    Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces) (English)
    0 references
    1986
    0 references
    The starting point of this paper is the dual space \({\mathcal G}^*\) of a real Lie algebra \({\mathcal G}\) of dimension n. \({\mathcal G}^*\) is equipped with a natural Poisson structure. A sphere \(S^{n-1}\) with a natural Jacobi structure is obtained as a quotient by the group of positive homotheties. The leaves of \(S^{n-1}\) are the orbits of the quotient coadjoint mapping. The notion of quotient coadjoint representation of a Lie algebra or of a convex Lie group is introduced. A systematic study of this representation leads to the notion of homogeneous contact spaces (of odd dimension) and of locally conformally symplectic homogeneous spaces (of even dimension). A homogeneous contact space is a covering of a leaf of \(S^{n-1}\), which in turn may be proper or improper. An improper homogeneous contact space admits a corresponding Pfaffian homogeneous space as a covering. The results for locally conformally symplectic homogeneous spaces are similar.
    0 references
    real Lie algebra
    0 references
    Jacobi structure
    0 references
    homogeneous contact spaces
    0 references
    conformally symplectic homogeneous spaces
    0 references
    0 references

    Identifiers