Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces) (Q1085814)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces) |
scientific article; zbMATH DE number 3984062
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces) |
scientific article; zbMATH DE number 3984062 |
Statements
Représentation coadjointe quotient et espaces homogènes de contact ou localement conformément symplectiques. (Quotient coadjoint representation and homogeneous contact or locally conformally symplectic spaces) (English)
0 references
1986
0 references
The starting point of this paper is the dual space \({\mathcal G}^*\) of a real Lie algebra \({\mathcal G}\) of dimension n. \({\mathcal G}^*\) is equipped with a natural Poisson structure. A sphere \(S^{n-1}\) with a natural Jacobi structure is obtained as a quotient by the group of positive homotheties. The leaves of \(S^{n-1}\) are the orbits of the quotient coadjoint mapping. The notion of quotient coadjoint representation of a Lie algebra or of a convex Lie group is introduced. A systematic study of this representation leads to the notion of homogeneous contact spaces (of odd dimension) and of locally conformally symplectic homogeneous spaces (of even dimension). A homogeneous contact space is a covering of a leaf of \(S^{n-1}\), which in turn may be proper or improper. An improper homogeneous contact space admits a corresponding Pfaffian homogeneous space as a covering. The results for locally conformally symplectic homogeneous spaces are similar.
0 references
real Lie algebra
0 references
Jacobi structure
0 references
homogeneous contact spaces
0 references
conformally symplectic homogeneous spaces
0 references