Class number relations of algebraic tori. II (Q1088721)

From MaRDI portal





scientific article; zbMATH DE number 3991623
Language Label Description Also known as
English
Class number relations of algebraic tori. II
scientific article; zbMATH DE number 3991623

    Statements

    Class number relations of algebraic tori. II (English)
    0 references
    0 references
    1986
    0 references
    [For part I see the preceding review.] Let K/k be a finite extension of number fields, \(T_ 1\) the kernel of the norm map \(R_{K/k}(G_ m/k)\to G_ m\), and \(T_ 2=G_ m\). Write \(h_ k\), \(h_ K\), \(h_{K/k}\), \(h'_{K/k}\) for the class numbers of k, K, \(T_ 1\), \(T_ 2\), respectively. Put \(E(K/k)=h_ K(h_ k h_{K/k})^{-1}\), \(E'(K/k)=h_ K (h_ k h'_{K/k})^{-1}\). Formulas for E and E' are given in terms of Adamson's non-normal cohomology groups.
    0 references
    class number
    0 references
    algebraic torus
    0 references
    Tamagawa number
    0 references
    Adamson's non-normal cohomology groups
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references