A generalization of a theorem of Fedorov for harmonic functions of several variables (Q1088816)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of a theorem of Fedorov for harmonic functions of several variables |
scientific article; zbMATH DE number 3991887
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of a theorem of Fedorov for harmonic functions of several variables |
scientific article; zbMATH DE number 3991887 |
Statements
A generalization of a theorem of Fedorov for harmonic functions of several variables (English)
0 references
1986
0 references
Sei D ein Gebiet \(\subseteq R^ n\) und P eine kompakte Menge \(\subset D\), mit \(D\setminus P\) überall dicht. Eine Funktion u(x), \(x\in D\), die stetig in D und harmonisch in \(D\setminus P\) ist, wird harmonisch in D sein, sobald die Bedingung \(\int_{S}(\partial u(x)/\partial n)d_ xS=0\) für alle glatten, geschlossenen Oberflächen \(S\subset D\setminus P\) befriedigt ist.
0 references
boundary integral condition
0 references