On the equation \(\sum ^{s}_{j=1}(1/x_ j)+(1/(x_ 1\,\dots \,x_ s))=1\) and Znám's problem (Q1090359)

From MaRDI portal





scientific article; zbMATH DE number 4006338
Language Label Description Also known as
English
On the equation \(\sum ^{s}_{j=1}(1/x_ j)+(1/(x_ 1\,\dots \,x_ s))=1\) and Znám's problem
scientific article; zbMATH DE number 4006338

    Statements

    On the equation \(\sum ^{s}_{j=1}(1/x_ j)+(1/(x_ 1\,\dots \,x_ s))=1\) and Znám's problem (English)
    0 references
    0 references
    0 references
    0 references
    1987
    0 references
    Consider the equations \[ (1)\quad \sum^{s}_{j=1}(1/x_ j)+(1/(x_ 1...x_ s))=1,\quad 1<x_ 1<x_ 2<...<x_ s \] and \[ (2)\quad \sum^{s}_{j=1}(1/x_ j)-(1/(x_ 1...x_ s))=1,\quad 1<x_ 1<x_ 2<...<x_ s,\quad s>2. \] Znám asked whether there exists an integer \(x_ i\) for every integer \(s>1\) such that \(x_ i\) is a proper factor of \(x_ 1...x_{i-1}x_{i+1}...x_ s+1\) for \(i=1,...,s.\) Let \(\Omega\) (s) be the number of solutions of (1), Z(s) be the number of solutions of Znám's problem and A(s) be the number of solutions of (2). In this paper, the authors give all the 23 integer solutions of (1) when \(s=7\). They also prove that (i) if \(s\geq 11\), then \(\Omega (s+1)\geq \Omega (s)+8\) and if 2 \(\nmid s\), \(s\geq 11\), then \(\Omega (s+1)\geq \Omega (s)+9;\) (ii) if \(s\geq 12\), then Z(s)\(\geq 8\) and if 2 \(| s\), \(s\geq 12\), then Z(s)\(\geq 9;\) (iii) if \(s\geq 10\), then \(A(s+1)\geq \Omega (s)+\Omega (s-1)+16\) and if 2 \(| s\), \(s\geq 12\), then \(A(s+1)\geq \Omega (s)+\Omega (s-1)+18\).
    0 references
    sums of unit fractions
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers