Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients (Q1090841)

From MaRDI portal





scientific article; zbMATH DE number 4008921
Language Label Description Also known as
English
Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients
scientific article; zbMATH DE number 4008921

    Statements

    Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients (English)
    0 references
    0 references
    1987
    0 references
    It is proved that the initial value problem \[ \partial_ tv+\sum^{n}_{i=1}(-\Delta)^{-\beta_ i/2} v\cdot \partial_{x_ i}v=0,\quad t>0,\quad x\in {\mathbb{R}}^ n,\quad \beta_ i\in [1,n);\quad v(x,0)=h(x), \] where \((-\Delta)^{-\beta /2} f(x)=C_ n\int_{{\mathbb{R}}^ n}(f(y)/| x-y|^{n-\beta})dy\), \(h\in C_ 0^{\infty}({\mathbb{R}}^ n)\) has a unique global solution \(v\in C([0,\infty)\), \(H^ s({\mathbb{R}}^ n))\) for all \(s\in {\mathbb{Z}}^+\). The local existence is proved by the method of vanishing viscosity and the global existence follows from the a priori estimate.
    0 references
    unique global solution
    0 references
    local existence
    0 references
    vanishing viscosity
    0 references
    a priori estimate
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references