Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients (Q1090841)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients |
scientific article; zbMATH DE number 4008921
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients |
scientific article; zbMATH DE number 4008921 |
Statements
Global existence of solutions to a nonlinear evolution equation with nonlocal coefficients (English)
0 references
1987
0 references
It is proved that the initial value problem \[ \partial_ tv+\sum^{n}_{i=1}(-\Delta)^{-\beta_ i/2} v\cdot \partial_{x_ i}v=0,\quad t>0,\quad x\in {\mathbb{R}}^ n,\quad \beta_ i\in [1,n);\quad v(x,0)=h(x), \] where \((-\Delta)^{-\beta /2} f(x)=C_ n\int_{{\mathbb{R}}^ n}(f(y)/| x-y|^{n-\beta})dy\), \(h\in C_ 0^{\infty}({\mathbb{R}}^ n)\) has a unique global solution \(v\in C([0,\infty)\), \(H^ s({\mathbb{R}}^ n))\) for all \(s\in {\mathbb{Z}}^+\). The local existence is proved by the method of vanishing viscosity and the global existence follows from the a priori estimate.
0 references
unique global solution
0 references
local existence
0 references
vanishing viscosity
0 references
a priori estimate
0 references
0.9529393
0 references
0.94109946
0 references
0.9380919
0 references