On Kakeya's maximal function (Q1091558)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Kakeya's maximal function |
scientific article; zbMATH DE number 4011144
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Kakeya's maximal function |
scientific article; zbMATH DE number 4011144 |
Statements
On Kakeya's maximal function (English)
0 references
1986
0 references
Let s be the family of rectangles in \({\mathbb{R}}^ d\) with dimensions \(a\times a\times...\times a\times aN\) but with arbitrary direction. Set \(Mf=\sup_{x\in A\in S}| A|^{-1}\int_{A}| f| dx.\) For \(d\geq 3\) the author proves the inequality \(\| Mf\|_{L^ d({\mathbb{R}}^ d)}\leq C(\log N)^{3/2}\| f\|_{L^ d({\mathbb{R}}^ d)}\) with an absolute constant C. In the case \(d=2\) the same is true with the exponent \(1/2\) instead of 3/2. [Cf. \textit{A. Cordoba}, The Kakeya maximal function and the spherical summation multipliers, Am. J. Math. 99, 1-22 (1977; Zbl 0384.42008)].
0 references
Kakeya maximal function
0 references
spherical summation multipliers
0 references
0 references
0 references
0.9162682
0 references
0.91205794
0 references
0.9097922
0 references
0.90878975
0 references
0 references