Calderón-Zygmund theory for operator-valued kernels (Q1092353)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Calderón-Zygmund theory for operator-valued kernels |
scientific article; zbMATH DE number 4019680
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Calderón-Zygmund theory for operator-valued kernels |
scientific article; zbMATH DE number 4019680 |
Statements
Calderón-Zygmund theory for operator-valued kernels (English)
0 references
1986
0 references
The authors present a new angle of the classical paper of Benedek- Calderón-Panzone on convolution operators on Banach space valued functions; with BMO, UMD, atoms, weights, Littlewood-Paley operators, operators with variable kernels, in the vector-valued setting. From the new results: For every \(\epsilon >0\), there exists \(C_{\epsilon}>0:\) \((T^*f)^{\#}\leq C_{\epsilon}M_{1+\epsilon}f\), \(f\in L_ c^{\infty}\); then \(T^*\) is bounded from \(L_ c^{\infty}\) to BMO. And \[ \int_{R^ n}T^*f(x)^ pw(x)dx\leq C_{p,w}\int_{R^ n}| f(x)|^ pw(x)dx, \] for all \(1<p<\infty\), \(w\in A_ p\).
0 references
convolution operators on Banach space valued functions
0 references
0 references
0 references
0 references
0.9587251
0 references
0.94380194
0 references
0.93071496
0 references
0.91413724
0 references
0.91409594
0 references
0.9135142
0 references