Un théorème de Choquet-Deny pour les groupes moyennables. (A theorem of Choquet-Deny for amenable groups) (Q1092497)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Un théorème de Choquet-Deny pour les groupes moyennables. (A theorem of Choquet-Deny for amenable groups) |
scientific article; zbMATH DE number 4020079
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Un théorème de Choquet-Deny pour les groupes moyennables. (A theorem of Choquet-Deny for amenable groups) |
scientific article; zbMATH DE number 4020079 |
Statements
Un théorème de Choquet-Deny pour les groupes moyennables. (A theorem of Choquet-Deny for amenable groups) (English)
0 references
1988
0 references
Let G be a connected locally compact separable amenable group. Let \(\sigma\) be a positive measure on the Borel \(\sigma\)-field of G. We study the positive Borel functions h on G which satisfy: \[ \forall g\in G,\int _{G}h(gx)\sigma (dx)=\int _{G}h(xg)\sigma (dx)=h(g). \] Under ``smooth'' assumptions on \(\sigma\), we establish an integral representation of these functions in term of exponentials.
0 references
connected locally compact separable amenable group
0 references
integral representation
0 references