The optimal point of the gradient of finite element solution (Q1092633)

From MaRDI portal





scientific article; zbMATH DE number 4020396
Language Label Description Also known as
English
The optimal point of the gradient of finite element solution
scientific article; zbMATH DE number 4020396

    Statements

    The optimal point of the gradient of finite element solution (English)
    0 references
    0 references
    1986
    0 references
    Consider the following Dirichlet problem: \[ -(au_ x+bu_ y)_ x- (bu_ x+cu_ y)_ y+qu=f\quad in\quad \Omega,\quad u=0\quad on\quad \partial \Omega, \] where \(\Omega\) is a bounded rectangular region of \({\mathbb{R}}^ 2.\) The author extends some superconvergence results of the gradients of the solution at Gaussian points when the coefficients a, b and c are discontinuous along a piecewise straight line S in \(\Omega\). In this way, the author uses serendipity rectangular elements of degree 2 or 3.
    0 references
    finite elements
    0 references
    discontinuous coefficients
    0 references
    superconvergence
    0 references
    Gaussian points
    0 references
    serendipity rectangular elements
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references