Harmonic functions on manifolds of negative curvature (Q1093045)

From MaRDI portal





scientific article; zbMATH DE number 4021563
Language Label Description Also known as
English
Harmonic functions on manifolds of negative curvature
scientific article; zbMATH DE number 4021563

    Statements

    Harmonic functions on manifolds of negative curvature (English)
    0 references
    0 references
    1986
    0 references
    Let \(M\) be a complete simply-connected \(n\)-dimensional manifold having sectional curvature at most \(-k^2\), where \(k^2>0\). Then: (i) the Green function \(E(x)\) for \(M\) with the pole at a point \(0\in M\) satisfies \(E(x)\leq (k^{n-1}/\omega_n)\int^\infty_r(1/sh^{n-1}kt)\,dt\), (ii) the mean value theorem is proved for harmonic functions on \(M\). If such a function belongs to \(L^1(M)\), then it is equal to zero identically.
    0 references
    Riemannian manifolds
    0 references
    nonconstant negative curvature
    0 references
    higher dimensional manifold
    0 references
    sectional curvature
    0 references
    Green function
    0 references
    mean value theorem
    0 references
    harmonic functions
    0 references

    Identifiers