Initial/boundary value problems for the semidiscrete Boltzmann equation: Analysis by Adomian's decomposition method (Q1093130)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Initial/boundary value problems for the semidiscrete Boltzmann equation: Analysis by Adomian's decomposition method |
scientific article; zbMATH DE number 4021870
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Initial/boundary value problems for the semidiscrete Boltzmann equation: Analysis by Adomian's decomposition method |
scientific article; zbMATH DE number 4021870 |
Statements
Initial/boundary value problems for the semidiscrete Boltzmann equation: Analysis by Adomian's decomposition method (English)
0 references
1987
0 references
Im Banachraum der reellen, stetigen Funktionen N(\(\theta\),x,t), \((\theta,x,t)\in {\mathbb{R}}^ 3\), die \(2\pi\)-periodisch in \(\theta\), differenzierbar nach x und t, mit \(\sup (| N|,| \partial N/\partial t|,| \partial N/\partial x|)<\infty\) sind, wird die nichtlineare gleichung \[ \partial N/\partial t+c \cos \theta \partial N/\partial x=C((1/\pi)\int^{\pi}_{0}(\phi,x,t)N(\phi +\pi,x,t)d\phi -N(\theta,x,t)N(\theta +\pi,x,t)), \] mit Konstanten c, C betrachtet. Einige die Lösungen N dieser Gleichung betreffende, wegen ihrer physikalischen Bedeutung interessante Probleme werden zuerst auf die Existenzfrage von Fixpunkten gewisser funktionalen Transformationen zurückgeführt und dann mit der sogenannten Adomianschen zerlegungsmethode behandelt.
0 references
Adomian's decomposition method
0 references
initial/boundary value problems
0 references
semidiscrete Boltzmann equation
0 references
semilinear type
0 references
kinetic theory of gases
0 references
fixed points of functional transformations
0 references
0.8985526
0 references
0.89648336
0 references
0.89487666
0 references
0 references
0.8780595
0 references