Estimates of Kolmogorov diameters of the classes of periodic functions of several variables with low order of smoothness (Q1093854)

From MaRDI portal





scientific article; zbMATH DE number 4024029
Language Label Description Also known as
English
Estimates of Kolmogorov diameters of the classes of periodic functions of several variables with low order of smoothness
scientific article; zbMATH DE number 4024029

    Statements

    Estimates of Kolmogorov diameters of the classes of periodic functions of several variables with low order of smoothness (English)
    0 references
    0 references
    1987
    0 references
    Let \(\tilde W^ r_ p\) be the class of \(2\pi\)-periodical functions \(x(t_ 1,...,t_ n)\) whose means are equal to 0. Each function has r-th Weil fractional derivatives which are bounded by 1 in \(\tilde L_ p\). The author derives the next estimates of Kolmogorov diameters \(d_ N(\tilde W^ r_ p,\tilde L_ q)\) \[ (N^{-q/2}\log^{\ell - 1}N)^{r_ 1-1/p+1/q}\ll d_ N(\tilde W^ r_ p,\tilde L_ q)\quad \ll \] \[ \ll \quad (N^{-q/2}\log^{\ell -1}N)^{r_ 1- 1/p+1/q}(\log^{\ell -1}N)^{1/2-1/q}, \] where \(r=R^ n\), \(r_ 1=...=r_{\ell}<r_{\ell +1}\leq...\leq r_ n\) and \(2\leq p<q<\infty\), \(1/p-1/q<r_ 1<\beta\) or \(1<p\leq 2<q<\infty\), \(1/p-1/q<r_ 1<1/p\).
    0 references
    Kolmogorov diameters
    0 references

    Identifiers