A geometrical approach to bifurcation for nonlinear boundary value problems (Q1095296)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A geometrical approach to bifurcation for nonlinear boundary value problems |
scientific article; zbMATH DE number 4027935
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A geometrical approach to bifurcation for nonlinear boundary value problems |
scientific article; zbMATH DE number 4027935 |
Statements
A geometrical approach to bifurcation for nonlinear boundary value problems (English)
0 references
1986
0 references
On étudie le problème aux limites \(y''+g(y)=K \sin (\Omega t),\quad y(0)=y(\pi /\Omega)=0.\) Puis on fait une application sur l'équation du pendule. A la fin on donne des relations asymptotiques convenables.
0 references
second order nonlinear boundary value problems
0 references
pendulum equation
0 references
averaging method
0 references
resonance curves
0 references
0 references