On the J-singular values of a matrix (Q1096696)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the J-singular values of a matrix |
scientific article; zbMATH DE number 4031879
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the J-singular values of a matrix |
scientific article; zbMATH DE number 4031879 |
Statements
On the J-singular values of a matrix (English)
0 references
1987
0 references
Let \(E_ n\) be the unit matrix and \(J=\left[ \begin{matrix} 0\\ -E_ n\end{matrix} \begin{matrix} E_ n\\ 0\end{matrix} \right]\). The eigenvalues of the matrix \(C=JA^ TJA\) are called the J-singular values of the real 2n\(\times 2n\) matrix A. The author proves that the J-singular values of real 2n\(\times 2n\) matrices are invariant with respect to products by symplectic matrices.
0 references
orthogonally similar transformation
0 references
eigenvalues
0 references
J-singular values
0 references
symplectic matrices
0 references