Zur Gültigkeit des Huygensschen Prinzips bei hyperbolischen Differentialgleichungssystemen in statischen Raum-Zeiten. (Validity of Huygens' principle for hyperbolic differential equation systems in static space times) (Q1098018)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Zur Gültigkeit des Huygensschen Prinzips bei hyperbolischen Differentialgleichungssystemen in statischen Raum-Zeiten. (Validity of Huygens' principle for hyperbolic differential equation systems in static space times) |
scientific article; zbMATH DE number 4036331
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Zur Gültigkeit des Huygensschen Prinzips bei hyperbolischen Differentialgleichungssystemen in statischen Raum-Zeiten. (Validity of Huygens' principle for hyperbolic differential equation systems in static space times) |
scientific article; zbMATH DE number 4036331 |
Statements
Zur Gültigkeit des Huygensschen Prinzips bei hyperbolischen Differentialgleichungssystemen in statischen Raum-Zeiten. (Validity of Huygens' principle for hyperbolic differential equation systems in static space times) (English)
0 references
1987
0 references
Known necessary conditions for the validity of Huygens' principle for the self-adjoint scalar wave equation, for Maxwell's and Weyl's equations are examined in static space-times. To this end we use a three-dimensional Newman-Penrose-formalism which was suggested by \textit{Z. Perjés} [J. Math. Phys. 11, 3383-3391 (1970)]. Two of the main results are: (i) Huygens' principle does not hold in static Petrov-type D space-times. (ii) A static space-time in which two of the three types of equations mentioned above satisfy Huygens' principle is conformally flat. A result analogous to i) for Petrov-type I space-times has been derived only under additional assumptions. The Huygensian space-times are determined explicitly for a number of examples of static metrics known from General Relativity.
0 references
Huygens' principle
0 references
static space-times
0 references
Newman-Penrose-formalism
0 references
0.8204791
0 references
0.81072295
0 references
0.8099124
0 references
0.80990696
0 references
0 references
0.8065446
0 references
0.8053461
0 references