A note on Arhangelskii's inequality (Q1098129)

From MaRDI portal





scientific article; zbMATH DE number 4036696
Language Label Description Also known as
English
A note on Arhangelskii's inequality
scientific article; zbMATH DE number 4036696

    Statements

    A note on Arhangelskii's inequality (English)
    0 references
    0 references
    1987
    0 references
    A well-known method is applied to show that, if X is a Hausdorff space then Shapirovskij's inequality \(| X| \leq \exp (L(X)\cdot \psi (X)\cdot t(X))\) can be improved to \(| X| \leq \exp (qL(X)\cdot S\psi (X)\cdot t(X))\), where qL(X) and \(S\psi\) (X) are quasi-Lindelöf number and a strong pseudocharacter of X, resp.
    0 references
    cardinal inequality
    0 references
    tightness
    0 references
    quasi-Lindelöf number
    0 references
    strong pseudocharacter
    0 references

    Identifiers