\({\mathbb{Z}}_ n\) Baxter model: Critical behavior (Q1099202)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \({\mathbb{Z}}_ n\) Baxter model: Critical behavior |
scientific article; zbMATH DE number 4039978
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \({\mathbb{Z}}_ n\) Baxter model: Critical behavior |
scientific article; zbMATH DE number 4039978 |
Statements
\({\mathbb{Z}}_ n\) Baxter model: Critical behavior (English)
0 references
1986
0 references
The \({\mathbb{Z}}_ n\) Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. We calculate the critical behavior of \(\Pr ob_ n(\sigma =\omega^ k)\) using techniques developed in number theory in the study of the congruence properties of p(m), the number of unrestricted partitions of an integer m.
0 references
order parameters
0 references
critical exponents
0 references
partition identities
0 references
transformation formula
0 references
elliptic theta function
0 references
Kolberg method
0 references
\({bbfZ}_ n\) Baxter model
0 references
exactly solvable lattice model
0 references
0.87676597
0 references
0.8732689
0 references
0.8652508
0 references
0.86232245
0 references
0.86145955
0 references
0.8579855
0 references
0.8576942
0 references
0.8575227
0 references