Representation of a solution of a generalized boundary problem for a system of differential equations, elliptic in the sense of Petrovskij (Q1099328)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Representation of a solution of a generalized boundary problem for a system of differential equations, elliptic in the sense of Petrovskij |
scientific article; zbMATH DE number 4040399
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Representation of a solution of a generalized boundary problem for a system of differential equations, elliptic in the sense of Petrovskij |
scientific article; zbMATH DE number 4040399 |
Statements
Representation of a solution of a generalized boundary problem for a system of differential equations, elliptic in the sense of Petrovskij (English)
0 references
1985
0 references
Es sei \(\Omega\) ein Gebiet aus \(R^ n\), das mit einer geschlossenen Fläche S der Klasse \(C^{\infty}\) begrenzt ist. Es seien D(\({\bar \Omega}\)) und D(S) die Räume der unendlich oft differenzierbaren Funktionen auf \({\bar \Omega}=\Omega \cup S\) und S. Man betrachtet das elliptische System von Differentialgleichungen (1) \[ L(x,D)u\equiv (L_{ij}(x,D))_{i,j=1...p}u=F, \] \[ L_{ij}(x,D)=\sum_{| \mu | \leq t_ j}a_{\mu}^{ij}(x)D^{\mu},\quad a_{\mu}^{ij}(x)\in D({\bar \Omega}), \] \[ \mu =(\mu_ 1,...,\mu_ n),\quad D^{\mu}=D_ 1^{\mu_ 1}...D_ n^{\mu_ n},\quad D_ k^{\mu_ k}=(-i(\partial /\partial x_ k))^{\mu_ k} \] mit m Randbedingungen der Form \[ (2)\quad B(x,D)u\equiv (B_{hj}(x,D)_{h=1...m,j=1...p}u=G, \] wobei die Koeffizienten aus (2) zu D(S) gehören. Die Randwertaufgabe (1)-(2) wird gelöst und die Eindeutigkeit der Lösung bewiesen.
0 references
existence
0 references
uniqueness
0 references
smoothness
0 references