On A-optimal block matrices and weighing designs when N\(\equiv 3\,(mod\,4)\) (Q1099556)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On A-optimal block matrices and weighing designs when N\(\equiv 3\,(mod\,4)\) |
scientific article; zbMATH DE number 4041092
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On A-optimal block matrices and weighing designs when N\(\equiv 3\,(mod\,4)\) |
scientific article; zbMATH DE number 4041092 |
Statements
On A-optimal block matrices and weighing designs when N\(\equiv 3\,(mod\,4)\) (English)
0 references
1988
0 references
Let \({\mathcal B}(N,n)\) denote the class of \(n\times n\) block matrices with \(B=(B_{ij})\) where \(B_{ij}=(N-3)I_{r_ i}+3J_{r_ i}\) and \(B_{ij}=-J_{r_ ir_ j}\) for \(i\neq j\), \(N\geq n\) and \(N\equiv 3 (mod 4)\). The A-optimal matrices in \({\mathcal B}(N,n)\) are classified. The relevance of this toward finding A-optimal weighing designs is explained.
0 references
D-optimality
0 references
majorization
0 references
Schur convexity
0 references
block matrices
0 references
A-optimal matrices
0 references
A-optimal weighing designs
0 references
0.90759987
0 references
0 references
0.8862071
0 references
0.88495845
0 references