Conditions nécessaires et suffisantes d'existence de solutions en calcul des variations. (Necessary and sufficient conditions for the existence of solutions in the calculus of variations) (Q1100721)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Conditions nécessaires et suffisantes d'existence de solutions en calcul des variations. (Necessary and sufficient conditions for the existence of solutions in the calculus of variations) |
scientific article; zbMATH DE number 4044583
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Conditions nécessaires et suffisantes d'existence de solutions en calcul des variations. (Necessary and sufficient conditions for the existence of solutions in the calculus of variations) |
scientific article; zbMATH DE number 4044583 |
Statements
Conditions nécessaires et suffisantes d'existence de solutions en calcul des variations. (Necessary and sufficient conditions for the existence of solutions in the calculus of variations) (English)
0 references
1987
0 references
A variational problem of the form \[ P: Inf\{\int^{b}_{a}f(t,x(t),x'(t))dt: x\in W^{1,q}(a,b),\quad x(a)=\alpha,\quad x(b)=\beta \}, \] where \(1<q<+\infty\), is considered in the work. Necessary and sufficient conditions are formulated for the regular and non convex function f under which the problem P has at least one solution for any boundary conditions.
0 references
relaxed problem
0 references
pseudo-Hamiltonian
0 references
variational problem
0 references
0 references