No arbitrary product \(\beta([0,\infty))-[0,\beta)\) contains a nondegenerate hereditarily indecomposable continuum. (Q1100763)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: No arbitrary product \(\beta([0,\infty))-[0,\beta)\) contains a nondegenerate hereditarily indecomposable continuum. |
scientific article; zbMATH DE number 4044728
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | No arbitrary product \(\beta([0,\infty))-[0,\beta)\) contains a nondegenerate hereditarily indecomposable continuum. |
scientific article; zbMATH DE number 4044728 |
Statements
No arbitrary product \(\beta([0,\infty))-[0,\beta)\) contains a nondegenerate hereditarily indecomposable continuum. (English)
0 references
1988
0 references
Stone-Čech remainder of real half-line
0 references
hereditarily indecomposable subcontinua
0 references