Zur Frobeniusoperation auf der Homologie einiger arithmetischer Gruppen. (On the Frobenius operation on the homology of some arithmetic groups) (Q1101826)

From MaRDI portal





scientific article; zbMATH DE number 4047945
Language Label Description Also known as
English
Zur Frobeniusoperation auf der Homologie einiger arithmetischer Gruppen. (On the Frobenius operation on the homology of some arithmetic groups)
scientific article; zbMATH DE number 4047945

    Statements

    Zur Frobeniusoperation auf der Homologie einiger arithmetischer Gruppen. (On the Frobenius operation on the homology of some arithmetic groups) (English)
    0 references
    0 references
    1988
    0 references
    Let \({\mathfrak a}\) be an ideal of the polynomial ring \({\mathbb{F}}_ q[t]\), \(\Gamma_{{\mathfrak a}}=\{\gamma \in GL_ 2({\mathbb{F}}_ q[t])|\gamma\equiv 1(mod {\mathfrak a})\}^ a \)congruence subgroup. The Frobenius endomorphism Frob: \(\Gamma\) \({}_{{\mathfrak a}}\to \Gamma_{{\mathfrak a}}\), \(\left( \begin{matrix} a\quad b\\ c\quad d\end{matrix} \right)\mapsto \left( \begin{matrix} a\quad p b p\\ c\quad p d p\end{matrix} \right)\), induces a linear transformation \((Frob)_*: H_ 1(\Gamma_{{\mathfrak a}},{\mathbb{Q}})\to H_ 1(\Gamma_{{\mathfrak a}},{\mathbb{Q}})\). In this paper it is shown that the eigenvalues of \((Frob)_*\) are roots of unity or zero. A formula for calculating the trace of \((Frob)^{{\mathfrak a}}_*\) is given as well.
    0 references
    eigenvalues of Frobenius map
    0 references
    trace of Frobenius map
    0 references
    homology of congruence group
    0 references
    congruence subgroup
    0 references
    Frobenius endomorphism
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references