Zum isodiametrischen Problem im hyperbolischen Raum. (On the isodiametric problem in the hyperbolic space) (Q1102546)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Zum isodiametrischen Problem im hyperbolischen Raum. (On the isodiametric problem in the hyperbolic space) |
scientific article; zbMATH DE number 4050427
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Zum isodiametrischen Problem im hyperbolischen Raum. (On the isodiametric problem in the hyperbolic space) |
scientific article; zbMATH DE number 4050427 |
Statements
Zum isodiametrischen Problem im hyperbolischen Raum. (On the isodiametric problem in the hyperbolic space) (English)
0 references
1988
0 references
The author generalizes the concept of Steiner symmetrization to hyperbolic space. The thus generalized symmetrization preserves the volume, maps balls onto balls and does not increase the diameter of a set. The latter property is then used to show that among all compact sets having the same diameter precisely the balls have maximum volume (inequality of Bieberbach).
0 references
Bieberbach inequality
0 references
isodiametric problem
0 references
Steiner symmetrization
0 references
hyperbolic space
0 references