Journé's covering lemma and its extension to higher dimensions (Q1103142)

From MaRDI portal





scientific article; zbMATH DE number 4052244
Language Label Description Also known as
English
Journé's covering lemma and its extension to higher dimensions
scientific article; zbMATH DE number 4052244

    Statements

    Journé's covering lemma and its extension to higher dimensions (English)
    0 references
    0 references
    1986
    0 references
    The author extends Journé's covering lemma concerning dyadic coverings which are maximal in one coordinate direction, to the case of product domains \({\mathbb{R}}^{n_ 1}\times...\times {\mathbb{R}}^{n_ m}\) (m\(\geq 3)\) [originally \(m=2\), \textit{J. Journé}, Proc. Am. Math. Soc. 96, 593-598 (1986; Zbl 0594.42015)]. Using it the author establishes the boundedness of Calderón-Zygmund singular integrals (of product type) from the product Hardy space \(H^ p({\mathbb{R}}^{n_ 1}\times...\times {\mathbb{R}}^{n_ m})\) to \(L^ p({\mathbb{R}}^{n_ 1}\times...\times {\mathbb{R}}^{n_ m})\), which extends \textit{R. Fefferman}'s result in the case \(m=2\) [Proc. Nat. Acad. Sci. 83, 840-843 (1986; Zbl 0602.42023)]. It is pointed out that several differences occur in two cases \(m=2\) and \(m\geq 3\).
    0 references
    dyadic coverings
    0 references
    Calderón-Zygmund singular integrals
    0 references
    Hardy space
    0 references
    0 references

    Identifiers