The GCD property and irreducible quadratic polynomials (Q1103676)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The GCD property and irreducible quadratic polynomials |
scientific article; zbMATH DE number 4053765
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The GCD property and irreducible quadratic polynomials |
scientific article; zbMATH DE number 4053765 |
Statements
The GCD property and irreducible quadratic polynomials (English)
0 references
1986
0 references
Summary: The proof of the following theorem is presented: If D is, respectively, a Krull domain, a Dedekind domain, or a Prüfer domain, then D is correspondingly a UFD, a PID, or a Bezout domain if and only if every irreducible quadratic polynomial in D[X] is a prime element.
0 references
Prüfer v-multiplication domain
0 references
v-operation
0 references
Krull domain
0 references
Dedekind domain
0 references
UFD
0 references
PID
0 references
Bezout domain
0 references
irreducible quadratic polynomial
0 references