The GCD property and irreducible quadratic polynomials (Q1103676)

From MaRDI portal





scientific article; zbMATH DE number 4053765
Language Label Description Also known as
English
The GCD property and irreducible quadratic polynomials
scientific article; zbMATH DE number 4053765

    Statements

    The GCD property and irreducible quadratic polynomials (English)
    0 references
    0 references
    0 references
    0 references
    1986
    0 references
    Summary: The proof of the following theorem is presented: If D is, respectively, a Krull domain, a Dedekind domain, or a Prüfer domain, then D is correspondingly a UFD, a PID, or a Bezout domain if and only if every irreducible quadratic polynomial in D[X] is a prime element.
    0 references
    Prüfer v-multiplication domain
    0 references
    v-operation
    0 references
    Krull domain
    0 references
    Dedekind domain
    0 references
    UFD
    0 references
    PID
    0 references
    Bezout domain
    0 references
    irreducible quadratic polynomial
    0 references

    Identifiers