Twistor-gauge interpretation of Einstein-Hilbert equations (Q1103893)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Twistor-gauge interpretation of Einstein-Hilbert equations |
scientific article; zbMATH DE number 4054526
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Twistor-gauge interpretation of Einstein-Hilbert equations |
scientific article; zbMATH DE number 4054526 |
Statements
Twistor-gauge interpretation of Einstein-Hilbert equations (English)
0 references
1987
0 references
The author considers the twistor interpretation of the pure Einstein equations \((J=0)\) based on the following description due to D. Popov and L. Dajkhin: For any energy-momentum tensor \(T_{ij}\) there exists a current J such that the Einstein equations \(R_{ij}-()g_{ij}R=\chi T_{ij}\) are equivalent to the equations: \(\Delta R=J\), where R is the Cartan curvature on a pseudo-Riemannian four-dimensional manifold.
0 references
twistor interpretation
0 references
Einstein equations
0 references
energy-momentum tensor
0 references