Correction of finite element eigenvalues for problems with natural or periodic boundary conditions (Q1104058)

From MaRDI portal





scientific article; zbMATH DE number 4054957
Language Label Description Also known as
English
Correction of finite element eigenvalues for problems with natural or periodic boundary conditions
scientific article; zbMATH DE number 4054957

    Statements

    Correction of finite element eigenvalues for problems with natural or periodic boundary conditions (English)
    0 references
    0 references
    1988
    0 references
    Let \(\lambda_ 1,\lambda_ 2,..\). denote the eigenvalues of the Sturm- Liouville problem \(-y''+qy=\lambda y\), \(\delta_ 1y'(0)+\sigma_ 2y(0)=\sigma_ 3y'(\pi)+\sigma_ 4y(\pi)=0.\) For the case of natural and periodic boundary conditions and a finite element approximation on a uniform mesh of width \(h=\pi /n\) an asymptotic correction technique, developed by \textit{J. W. Paine}, \textit{F. R. de Hoog} and \textit{R. S. Anderssen} [Computing 26, 123-139 (1981; Zbl 0436.65063)] reduces the error of the approximation of \(\lambda_ k\) from \(O(k^ 4h^ 2)\) to \(O(kh^ 2)\). As numerical results show, the new technique is useful already for low values of k.
    0 references
    asymptotic correction
    0 references
    finite element method
    0 references
    natural boundary conditions
    0 references
    periodic boundary conditions
    0 references
    eigenvalues
    0 references
    Sturm-Liouville problem
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references