Survey of generalizations of Urquhart semantics (Q1104918)

From MaRDI portal





scientific article; zbMATH DE number 4057476
Language Label Description Also known as
English
Survey of generalizations of Urquhart semantics
scientific article; zbMATH DE number 4057476

    Statements

    Survey of generalizations of Urquhart semantics (English)
    0 references
    0 references
    1987
    0 references
    This paper reviews the extant semantic approaches and results on contractionless logics closely related to the relevant system \(RW\) (the relevant logic \(R\) without the contraction axiom: \((A\to.A\to B)\to.A\to B)\) and its positive fragment \(RW+\). The author declares these various approaches to be compromises between the intuitiveness of the original Urquhart semantics and the difficulties of obtaining completeness proofs. The approaches considered include \textit{A. Q. Abraham} [``Completeness of quantified classical relevant logic'', Stud. Logica (forthcoming)], \textit{K. Fine} [J. Philos. Logic 3, 347-372 (1974; Zbl 0296.02013)], \textit{R. Routley} and \textit{R. K. Meyer} [J. Philos. Logic 1, 192-208 (1972; Zbl 0317.02019)], \textit{R. K. Meyer} and \textit{R. Routley} [Stud. Logica 33, 183-194 (1974; Zbl 0316.02030)], \textit{H. Ono} and \textit{Y. Komori} [J. Symb. Logic 50, 169-201 (1985; Zbl 0583.03018)] and \textit{A. Urquhart} [J. Symb. Logic. 37, 159-169 (1972; Zbl 0245.02028)]. For other related results not included in the paper, see \textit{G. Charlwood} [J. Symb. Logic 46, 233-239 (1981; Zbl 0479.03012)], \textit{S. Giambrone}, \textit{R. K. Meyer} and \textit{A. Urquhart} [J. Symb. Logic 52, 526-529 (1987; Zbl 0624.03015)], \textit{S. Giambrone} and \textit{A. Urquhart} [Z. Math. Logik Grundlagen Math. 33, 433-439 (1987; Zbl 0611.03005)], \textit{R. K. Meyer}, \textit{S. Giambrone}, \textit{A. Urquhart} and \textit{E. P. Martin} [ibid. 34, 301-304 (1988; Zbl 0656.03011)] and \textit{J. Slaney} [Notre Dame J. Formal Logic 28, 395-407 (1987; Zbl 0637.03018)]. The paper also presents a new Gentzenization of RW without distribution using signed formulae, e.g., `TA', `FB', etc., as in the book of \textit{I. D. Zaslavskij} [Constructive symmetric logic (Russian) (Erevan, 1978)]. This approach is extended to a Gentzen system for all of RW by \textit{R. Brady} [``The Gentzenization and decidability of \(RW\)'', J. Philos. Logic 19, No.1, 35-73 (1990; Zbl 0697.03006)].
    0 references
    relevant logics
    0 references
    semilattice semantics
    0 references
    semilattice logic
    0 references
    relevant semantics
    0 references
    BCK logic
    0 references
    contractionless logics
    0 references
    relevant system RW
    0 references
    Urquhart semantics
    0 references
    completeness
    0 references
    Gentzenization
    0 references
    Gentzen system
    0 references

    Identifiers