Problème de Cauchy semi-linéaire en 3 dimensions d'espace. Un résultat de finitude. (A semilinear Cauchy problem in three dimensional spaces. A finiteness result) (Q1105124)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Problème de Cauchy semi-linéaire en 3 dimensions d'espace. Un résultat de finitude. (A semilinear Cauchy problem in three dimensional spaces. A finiteness result) |
scientific article; zbMATH DE number 4058071
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Problème de Cauchy semi-linéaire en 3 dimensions d'espace. Un résultat de finitude. (A semilinear Cauchy problem in three dimensional spaces. A finiteness result) |
scientific article; zbMATH DE number 4058071 |
Statements
Problème de Cauchy semi-linéaire en 3 dimensions d'espace. Un résultat de finitude. (A semilinear Cauchy problem in three dimensional spaces. A finiteness result) (English)
0 references
1988
0 references
We prove that if u is a solution of the semilinear wave equation \[ (\partial^ 2_ t-\Delta)u=\sum_{0\leq j\leq j_ 0}p_ j(t,x)u^ j,\quad (t,x)\in {\mathbb{R}}^ 4,\quad u\in H^ s,\quad s>2, \] such that the Cauchy data of u, \(u|_{t=0}\), \((\partial u/\partial t)|_{t=0}\) are Hörmander Fourier integral distributions on some analytic Lagrangian, then for every real \(\sigma\), there exist a subanalytic homogeneous isotropic subset \(L_{\sigma}\) of \(T^*{\mathbb{R}}^ 4\) such that \(WF^{\sigma}(u)\subset L_{\sigma}\). In particular, for every integer k, u is \(C^ k\) on a dense open subset.
0 references
semilinear
0 references
Cauchy data
0 references
integral distributions
0 references
subanalytic homogeneous isotropic subset
0 references
0 references
0.83950853
0 references
0.83180207
0 references
0.82367736
0 references
0.8235977
0 references