An identity for a class of arithmetical functions of two variables (Q1106872)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An identity for a class of arithmetical functions of two variables |
scientific article; zbMATH DE number 4063175
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An identity for a class of arithmetical functions of two variables |
scientific article; zbMATH DE number 4063175 |
Statements
An identity for a class of arithmetical functions of two variables (English)
0 references
1988
0 references
Sei \(C(n,r)\) die klassische Ramanujan-Summe. Sie ist multiplikativ in \(r\), aber nicht in \(n\). Von \textit{K. R. Johnson} [Elem. Math. 38, 122--124 (1983; Zbl 0516.10002)] stammt die Formel \[ \sum_{d\mid n}| C(d,r)| =r_*\prod_{p^ a\| n/r_*,\quad p\nmid r}(a+1)\prod_{p^ a\| n/gr_*,\quad p| r}(a(p-1)+1) \] falls \(r_*| n\) and \(0\) sonst \((r_*\) ist der Quotient von \(r\) durch seinen größten quadratfreien Teiler). Die Verf. beweisen elementar eine Identität für arithmetische Funktionen in 2 Variablen, welche obige sowie 5 weitere Formeln umfaßt.
0 references
identities
0 references
generalizations of Ramanujan sum
0 references
multiplicative function in both variables
0 references
arithmetic functions of two variables
0 references
0.9625948
0 references
0.9199969
0 references
0.88472885
0 references
0 references