The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof (Q1108549)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof |
scientific article; zbMATH DE number 4067621
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof |
scientific article; zbMATH DE number 4067621 |
Statements
The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof (English)
0 references
1985
0 references
In ``Théorie des distributions'' (Paris: Hermann) (1966; Zbl 0149.09501) \textit{L. Schwartz} introduced the spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C'\) of multiplication and convolution operators on temperate distributions. Then in ``Produits tensoriels topologique et espaces nucléaires'' (Mem. Am. Math. Soc. 16 (1963; Zbl 0123.30301)) \textit{A. Grothendieck} used tensor products to prove that both \({\mathcal O}_ M\) and \({\mathcal O}_ C'\) are bornological. Our proof of this property is more constructive and based on duality.
0 references
inductive and projective limits
0 references
bornological
0 references
Schwartz spaces
0 references
spaces of multiplication and convolution operators on temperate distributions
0 references
duality
0 references