The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof (Q1108549)

From MaRDI portal





scientific article; zbMATH DE number 4067621
Language Label Description Also known as
English
The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof
scientific article; zbMATH DE number 4067621

    Statements

    The spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C\) are ultrabornological. A new proof (English)
    0 references
    0 references
    1985
    0 references
    In ``Théorie des distributions'' (Paris: Hermann) (1966; Zbl 0149.09501) \textit{L. Schwartz} introduced the spaces \({\mathcal O}_ M\) and \({\mathcal O}_ C'\) of multiplication and convolution operators on temperate distributions. Then in ``Produits tensoriels topologique et espaces nucléaires'' (Mem. Am. Math. Soc. 16 (1963; Zbl 0123.30301)) \textit{A. Grothendieck} used tensor products to prove that both \({\mathcal O}_ M\) and \({\mathcal O}_ C'\) are bornological. Our proof of this property is more constructive and based on duality.
    0 references
    inductive and projective limits
    0 references
    bornological
    0 references
    Schwartz spaces
    0 references
    spaces of multiplication and convolution operators on temperate distributions
    0 references
    duality
    0 references

    Identifiers