Equivariant completions of rings with reductive group action (Q1109096)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Equivariant completions of rings with reductive group action |
scientific article; zbMATH DE number 4069073
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Equivariant completions of rings with reductive group action |
scientific article; zbMATH DE number 4069073 |
Statements
Equivariant completions of rings with reductive group action (English)
0 references
1987
0 references
From author's summary: Let the connected reductive algebraic group G act on the affine variety X, over an algebraically closed field of characteristic zero. The largest G-rational submodule of the completion of the coordinate ring of X along the ideal of a closed orbit is an equivariant completion. If the orbit is a local complete intersection in X, and if H denotes its stabilizer, then it is shown that the equivariant completion is G-isomorphic to the equivariant completion of the induction from H to G of the symmetric algebra of a finite-dimensional H-module.
0 references
action of reductive algebraic group
0 references
coordinate ring
0 references
equivariant completion
0 references
orbit
0 references
0.91188055
0 references
0.9106785
0 references
0 references
0.9012589
0 references
0 references
0 references