A note on Jónsson's theorem (Q1109763)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on Jónsson's theorem |
scientific article; zbMATH DE number 4070872
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on Jónsson's theorem |
scientific article; zbMATH DE number 4070872 |
Statements
A note on Jónsson's theorem (English)
0 references
1988
0 references
The author presents a model-theoretic proof of Jónsson's Theorem. Considering a type of algebras which have distributive lattices of congruences he proves that for any class of algebras \({\mathcal K}\) every subdirectly irreducible member \({\mathcal A}\) of the variety generated by \({\mathcal K}\) is a homomorphic image of a subalgebra of an ultraproduct of algebras in \({\mathcal K}\). The main step is to show that \({\mathcal A}\) is a model of the positive universal theory of \({\mathcal K}\).
0 references
equational theory
0 references
subdirectly irreducible algebra
0 references
model-theoretic proof of Jónsson's Theorem
0 references