The spaces \({\mathfrak L}^\alpha_{p,r}({\mathbb{R}}^{n+1})\) of parabolic potentials (Q1110688)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The spaces \({\mathfrak L}^\alpha_{p,r}({\mathbb{R}}^{n+1})\) of parabolic potentials |
scientific article; zbMATH DE number 4073414
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The spaces \({\mathfrak L}^\alpha_{p,r}({\mathbb{R}}^{n+1})\) of parabolic potentials |
scientific article; zbMATH DE number 4073414 |
Statements
The spaces \({\mathfrak L}^\alpha_{p,r}({\mathbb{R}}^{n+1})\) of parabolic potentials (English)
0 references
1987
0 references
Anisotropic Lebesgue spaces \[ {\mathfrak L}^{\alpha}_{p,r}({\mathbb{R}}^{n+1})=\{f: f\in L_ r({\mathbb{R}}^{n+1}),\quad {\mathcal F}^{-1}(| \xi |^ 2+i\tau)^{\alpha /2} {\mathcal F}f\in L_ p({\mathbb{R}}^{n+1})\} \] which are closely connected with Jones-Sampson classes of parabolic potentials are introduced. These spaces are described in terms of partial Riesz derivatives and partial Riesz potentials. Some applications of this description are given (multipliers in \({\mathfrak L}^{\alpha}_{p,r}\), identification with Sobolev-type spaces for \(\alpha =1,2,3...)\).
0 references
Anisotropic Lebesgue spaces
0 references
parabolic potentials
0 references
partial Riesz derivatives
0 references
partial Riesz potentials
0 references
multipliers
0 references