Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process) (Q1111251)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process) |
scientific article; zbMATH DE number 4076259
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process) |
scientific article; zbMATH DE number 4076259 |
Statements
Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process) (English)
0 references
1987
0 references
For a supercritical Galton-Watson process \((Z_ n)_{n\in {\mathbb{N}}}\), \(n^{-1}Log E Z_ n\) and \(n^{-1}Log Z_ n\) have the same limit m. In the Markovian case with exponential initial population, we give here a limit for the analogue of the first expression and an overestimation - in probability - for an analogue of the second one. Two variational formulas are at stake; the second one, with constraint over action integral, allows the definition of ``presence areas''.
0 references
spatial branching process
0 references
large deviations
0 references
action integral
0 references
Cramer transform
0 references
supercritical Galton-Watson process
0 references
variational formulas
0 references