Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process) (Q1111251)

From MaRDI portal





scientific article; zbMATH DE number 4076259
Language Label Description Also known as
English
Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process)
scientific article; zbMATH DE number 4076259

    Statements

    Espérances et majorations pour un processus de branchement spatial markovien. (Expectation and majorization for a Markov spatial branching process) (English)
    0 references
    0 references
    1987
    0 references
    For a supercritical Galton-Watson process \((Z_ n)_{n\in {\mathbb{N}}}\), \(n^{-1}Log E Z_ n\) and \(n^{-1}Log Z_ n\) have the same limit m. In the Markovian case with exponential initial population, we give here a limit for the analogue of the first expression and an overestimation - in probability - for an analogue of the second one. Two variational formulas are at stake; the second one, with constraint over action integral, allows the definition of ``presence areas''.
    0 references
    spatial branching process
    0 references
    large deviations
    0 references
    action integral
    0 references
    Cramer transform
    0 references
    supercritical Galton-Watson process
    0 references
    variational formulas
    0 references

    Identifiers