Regular spectral problems in vector-function spaces (Q1112223)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Regular spectral problems in vector-function spaces |
scientific article; zbMATH DE number 4077741
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Regular spectral problems in vector-function spaces |
scientific article; zbMATH DE number 4077741 |
Statements
Regular spectral problems in vector-function spaces (English)
0 references
1988
0 references
We consider in a space of vector-functions the spectral problem \[ \ell (y,\lambda)=y^{(n)}+P_ 1(x,\lambda)y^{(n-1)}+...+P_ n(x,\lambda)y=0, \] \[ U_{\nu}(y)=\sum^{k_{\nu}}_{j=1}A_{\nu j}y^{(j)}(0)+B_{\nu j}y^{(j)}(1)=0,\quad \nu =1,2,...,n, \] where \(y(x)=(y_ 1(x),...,y_ m(x))\); \(P_ s(x,\lambda)=\lambda^ sQ_{ss}+\sum^{s-1}_{j=1}\lambda^ jP_{sj}(x)\) are matrices \(m\times m\); \(A_{\nu j},B_{\nu j},Q_{ss}\) are constant matrices, det \(Q_{nn}\neq 0\). The boundary conditions are assumed to be normed.
0 references
Riesz basis
0 references
space of vector-functions
0 references
spectral problem
0 references