Local and global properties of solutions of quasilinear elliptic equations (Q1113004)

From MaRDI portal





scientific article; zbMATH DE number 4080007
Language Label Description Also known as
English
Local and global properties of solutions of quasilinear elliptic equations
scientific article; zbMATH DE number 4080007

    Statements

    Local and global properties of solutions of quasilinear elliptic equations (English)
    0 references
    0 references
    0 references
    1988
    0 references
    The main purpose of this paper is to study the global behavior and the isolated singularities of the positive radial solutions of the equation \[ \mathop{div}(| \nabla u|^{p-2}\nabla u(x))+u^ q(x)=0. \tag{E} \] The authors establish the following results. Let \(u\in C^ 1(\Omega)\setminus \{0\})\) be a positive radial solution of (E) in \(\Omega\setminus \{0\}\) then (i) either \(u\) can be extended to \(\Omega\) as \(C^ 1\) solution of (E) in \(\Omega\) or (ii) there exists an \(\alpha >0\) such that \[ \lim_{x\to 0} u(x)| x|^{(N-p)/(p-1)}=\alpha \quad\text{ if }p-1<q<N(p-1)/(N-p) \] or \[ \lim_{x\to 0} | x|^{p/(q+1-p)}u(x)=[(p/q+1-p)^{p-1}(N-pq/(q+1-p))]^{1/(q+1-1)}\tag{iii} \] \[ \text{ if } N(p-1)/(N- p)<q<Np/(N-p)-1 \] or \[ \lim_{x\to 0}[| x| (\log(1/| x|)] u(x)=[(N-p/p)((N-p)/(p-1))^{p-1}]^{(N-p)/(p-1)}\tag{iv} \] \[ \text{ if } q=N(p-1)/(N-p). \]
    0 references
    quasilinear
    0 references
    global behavior
    0 references
    isolated singularities
    0 references
    positive radial solutions
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references