On the existence of a global solution of the Cauchy problem for a Klein- Gordon-Dirac system (Q1113375)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the existence of a global solution of the Cauchy problem for a Klein- Gordon-Dirac system |
scientific article; zbMATH DE number 4082120
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the existence of a global solution of the Cauchy problem for a Klein- Gordon-Dirac system |
scientific article; zbMATH DE number 4082120 |
Statements
On the existence of a global solution of the Cauchy problem for a Klein- Gordon-Dirac system (English)
0 references
1991
0 references
We prove the existence of a unique global solution of the Cauchy problem for the Klein-Gordon-Dirac system \[ i(\partial \psi /\partial t)=- i\alpha \cdot \nabla \psi +(M-k\phi)\beta \psi;\quad \partial^ 2\phi /\partial t^ 2=\Delta \phi -m^ 2\phi +k\psi +\beta \psi, \] where \(M\geq 0\), \(m>0\) and \(k=k(r)\), \(r=| x|\), \(x\in {\mathbb{R}}^ 3\), such that \(k\in C^ 1({\mathbb{R}}_+;{\mathbb{R}})\), \(k/r\in W^{1,\infty}({\mathbb{R}}_+)\), for initial data with certain symmetries but not necessarily ``small''.
0 references
existence
0 references
unique global solution
0 references
Cauchy problem
0 references
Klein-Gordon-Dirac system
0 references
initial data with certain symmetries
0 references