Asymptotic properties of the multivariate Nadaraya-Watson regression function estimate: The fixed design case (Q1113582)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotic properties of the multivariate Nadaraya-Watson regression function estimate: The fixed design case |
scientific article; zbMATH DE number 4082734
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotic properties of the multivariate Nadaraya-Watson regression function estimate: The fixed design case |
scientific article; zbMATH DE number 4082734 |
Statements
Asymptotic properties of the multivariate Nadaraya-Watson regression function estimate: The fixed design case (English)
0 references
1988
0 references
Let \(\{x_ i^{(n)},Y_ i^{(n)}\}^ n_{i=1}\) be a sequence of independent observations from the model \(Y_ i^{(n)}=g(x_ i^{(n)}) + error\), where the regression function g is unknown and defined on a compact set in \(R^ d\). We show that a smoothed Nadaraya-Watson estimate of the function g(x) is asymptotically weak, mean square, strong, and completely consistent and asymptotically normal. The class of applicable kernels includes those with noncompact support for which \(\int^{\infty}_{0}z^{d-1}\sup_{\| x\| \geq z}K(x)dz<\infty\) and \(K(x)\geq cI_{(\| x\| \leq r)}(x)\), \(c,r>0\).
0 references
regression function
0 references
smoothed Nadaraya-Watson estimate
0 references
consistent
0 references
asymptotically normal
0 references