Ein Satz über die Entropie von Untermonoiden. (A theorem on the entropy of submonoids) (Q1113684)

From MaRDI portal





scientific article; zbMATH DE number 4080944
Language Label Description Also known as
English
Ein Satz über die Entropie von Untermonoiden. (A theorem on the entropy of submonoids)
scientific article; zbMATH DE number 4080944

    Statements

    Ein Satz über die Entropie von Untermonoiden. (A theorem on the entropy of submonoids) (English)
    0 references
    0 references
    1988
    0 references
    Let X be a finite alphabet. For \(L\subseteq X^*\) let \(\rho_ L\) denote the radius of convergence of the structure generating function \[ s_ L(t):=\sum^{\infty}_{n=0}card(L\cap X^ n)\cdot t^ n \] of the language L. The entropy of L is defined as \(H_ L:=-\log_{card X} \rho_ L\). We shall prove the following proposition: Theorem: Let L be an arbitrary subset of \(X^*\). Then for every \(\epsilon >0\) there is a finite subset U of L such that \[ H_{L^*}- H_{U^*}<\epsilon. \]
    0 references
    entropy of language
    0 references
    structure generating function
    0 references
    0 references
    0 references

    Identifiers